Ontological Formalisation of Mathematical Equations for Phenomic Data Exploitation - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Access content directly
Proceedings Lecture Notes in Computer Science Year : 2021

Ontological Formalisation of Mathematical Equations for Phenomic Data Exploitation

Abstract

In recent years, plant phenomics community has adopted Semantic Web technologies in order to harmonise heterogeneous, multi-scale and multi-source datasets. Semantic Web provides inference services for representing logic relationships in an unambiguous, homogeneous and clean manner, which enhances data harmonisation. However, mathematical relationships involving numerical attributes are poorly formalised, despite the fact that they are supported for a theoretical and well-defined structure. For instance, whilst unit ontologies (e.g. UO, OM, QUDT) provide relationships and annotations to perform unit conversion, they are not effectively used for automating the integration of heterogeneous measurements. Here we propose an ontological framework for representing mathematical equations supporting the automatised use of inference services, metadata, domain ontologies, and the internal structure of mathematical equations. This approach is evaluated using two plant phenomics case studies involving the calculation of unit conversions and thermal time.
Fichier principal
Vignette du fichier
978-3-030-80418-3_30.pdf (619.37 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03408000 , version 1 (25-01-2023)

Identifiers

Cite

Luis Felipe Vargas-Rojas. Ontological Formalisation of Mathematical Equations for Phenomic Data Exploitation. Lecture Notes in Computer Science, 12739, Springer International Publishing, pp.176-185, 2021, The Semantic Web: ESWC 2021 Satellite Events Virtual Event, June 6–10, 2021, Revised Selected Papers, 978-3-030-80417-6. ⟨10.1007/978-3-030-80418-3_30⟩. ⟨hal-03408000⟩
38 View
31 Download

Altmetric

Share

Gmail Facebook X LinkedIn More