Exploring complementarities between modelling approaches that enable upscaling from plant community functioning to ecosystem services as a way to support agroecological transition - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue in silico Plants Année : 2022

Exploring complementarities between modelling approaches that enable upscaling from plant community functioning to ecosystem services as a way to support agroecological transition

Résumé

Promoting plant diversity through crop mixtures is a mainstay of the agroecological transition. Modelling this transition requires considering both plant-plant interactions and plants' interactions with abiotic and biotic environments. Modelling crop mixtures enables designing ways to use plant diversity to provide ecosystem services, as long as they include crop management as input. A single modelling approach is not sufficient, however, and complementarities between models may be critical to consider the multiple processes and system components involved at different and relevant spatial and temporal scales. In this article, we present different modelling solutions implemented in a variety of examples to upscale models from local interactions to ecosystem services. We highlight that modelling solutions (i.e. coupling, metamodelling, inverse or hybrid modelling) are built according to modelling objectives (e.g. understand the relative contributions of primary ecological processes to crop mixtures, quantify impacts of the environment and agricultural practices, assess the resulting ecosystem services) rather than to the scales of integration. Many outcomes of multispecies agroecosystems remain to be explored, both experimentally and through the heuristic use of modelling. Combining models to address plant diversity and predict ecosystem services at different scales remains rare but is critical to support the spatial and temporal prediction of the many systems that could be designed.
Fichier principal
Vignette du fichier
diab037.pdf (14.13 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Licence : CC BY - Paternité

Dates et versions

hal-03470234 , version 1 (08-12-2021)
hal-03470234 , version 2 (01-03-2023)

Licence

Paternité

Identifiants

Citer

Noémie Gaudio, Gaëtan Louarn, Romain Barillot, Clémentine Meunier, Rémi Vezy, et al.. Exploring complementarities between modelling approaches that enable upscaling from plant community functioning to ecosystem services as a way to support agroecological transition. in silico Plants, 2022, 4 (1), pp.1-13. ⟨10.1093/insilicoplants/diab037/6449487⟩. ⟨hal-03470234v2⟩
106 Consultations
120 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More