Limited dispersal and local adaptation promote allopatric speciation in a biodiversity hotspot
Résumé
Recently diverged or diverging populations can offer unobstructed insights into early barriers to gene flow during the initial stages of speciation. The current study utilised a novel insect system (order Mantophasmatodea) to shed light on the early drivers of speciation. The members of this group have limited dispersal abilities, small allopatric distributions and strong habitat associations in the Cape Floristic Region biodiversity hotspot in South Africa. Sister taxa from the diverse family Austrophasmatidae were chosen as focal species (Karoophasma biedouwense, K. botterkloofense). Population genetics and Generalized Dissimilarity Modelling (GDM) were used to characterise spatial patterns of genetic variation and evaluate the contribution of environmental factors to population divergence and speciation. Extensive sampling confirmed the suspected allopatry of these taxa. However, hybrids were identified in a narrow region occurring between the species' distributions. Strong population structure was found over short geographic distances; particularly in K. biedouwense in which geographic distance accounted for 32% of genetic variation over a scale of 50 km (r = .56, p < .001). GDM explained 42%-78% of the deviance in observed genetic dissimilarities. Geographic distance was consistently indicated to be important for between species and within population differentiation, suggesting that limited dispersal ability may be an important neutral driver of divergence. Temperature, altitude, precipitation and vegetation were also indicated as important factors, suggesting the possible role of adaptation to local environmental conditions for species divergence. The discovery of the hybrid-zone, and the multiple allopatric species pairs in Austrophasmatidae support the idea that this could be a promising group to further our understanding of speciation modes.
Fichier principal
Molecular Ecology - 2021 - Dool - Limited dispersal and local adaptation promote allopatric speciation in a biodiversity.pdf (1.61 Mo)
Télécharger le fichier
Origine | Publication financée par une institution |
---|