Light and hydrologic connectivity drive dissolved oxygen synchrony in stream networks - Archive ouverte HAL Access content directly
Journal Articles Limnology and Oceanography Year : 2022

Light and hydrologic connectivity drive dissolved oxygen synchrony in stream networks

(1) , , , , , , , (1)
1
Jacob Diamond
Gilles Pinay
Susana Bernal
Matthew Cohen
David Lewis
Anna Lupon
Jay Zarnetske
Florentina Moatar

Abstract

Stream dissolved oxygen (DO) dynamics are an outcome of metabolic activity and subsequently regulate ecosystem functions such as in-stream solute and sediment reactions. The synchronization of DO signals in and across stream networks is both a cause and effect of the mode and timing of these functions, but there is limited empirical evidence for network patterns of DO synchrony. We used high frequency DO measurements at 42 sites spanning five catchments and stream orders to evaluate DO signal synchrony in response to variation in light (a driver of photosynthesis) and discharge (a control on DO signal spatial extent). We hypothesized that stream network DO synchrony arises when regional controls dominate: when light inputs are synchronous and when longitudinal hydrologic connectivity is high. By complement, we predicted that DO signal synchrony decreases as light becomes more asynchronous and stream flows decline or become discontinuous. Our results supported this hypothesis: greater DO signal synchrony arose with increasing light synchrony and flow connectivity. A model including these two controls explained 70% of variation in DO synchrony. We conclude that DO synchrony patterns within- and across-networks support the current paradigm of discharge and light control on stream metabolic activity. Finally, we propose that DO synchrony patterns are likely a useful prerequisite for scaling subdaily metabolism estimates to network and regional scales.
Not file

Dates and versions

hal-03896963 , version 1 (13-12-2022)

Identifiers

Cite

Jacob Diamond, Gilles Pinay, Susana Bernal, Matthew Cohen, David Lewis, et al.. Light and hydrologic connectivity drive dissolved oxygen synchrony in stream networks. Limnology and Oceanography, 2022, ⟨10.1002/lno.12271⟩. ⟨hal-03896963⟩
0 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More