Cytoskeletal components can turn wall-less spherical bacteria into kinking helices - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Access content directly
Journal Articles Nature Communications Year : 2022

Cytoskeletal components can turn wall-less spherical bacteria into kinking helices

Carole Lartigue
Fabien Rideau
Yorick Dahan
Mélanie Hillion
Jean-Paul Douliez
Julie Hardouin
Alain Blanchard

Abstract

Bacterial cell shape is generally determined through an interplay between the peptidoglycan cell wall and cytoplasmic filaments made of polymerized MreB. Indeed, some bacteria (e.g., Mycoplasma ) that lack both a cell wall and mreB genes consist of non-motile cells that are spherical or pleomorphic. However, other members of the same class Mollicutes (e.g., Spiroplasma , also lacking a cell wall) display a helical cell shape and kink-based motility, which is thought to rely on the presence of five MreB isoforms and a specific fibril protein. Here, we show that heterologous expression of Spiroplasma fibril and MreB proteins confers helical shape and kinking ability to Mycoplasma capricolum cells. Isoform MreB5 is sufficient to confer helicity and kink propagation to mycoplasma cells. Cryoelectron microscopy confirms the association of cytoplasmic MreB filaments with the plasma membrane, suggesting a direct effect on membrane curvature. However, in our experiments, the heterologous expression of MreBs and fibril did not result in efficient motility in culture broth, indicating that additional, unknown Spiroplasma components are required for swimming.
Fichier principal
Vignette du fichier
2022-Lartigue-Nature_Communications.pdf (1.86 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03914264 , version 1 (28-12-2022)

Licence

Attribution

Identifiers

Cite

Carole Lartigue, Bastien Lambert, Fabien Rideau, Yorick Dahan, Marion Decossas, et al.. Cytoskeletal components can turn wall-less spherical bacteria into kinking helices. Nature Communications, 2022, 13 (1), pp.6930. ⟨10.1038/s41467-022-34478-0⟩. ⟨hal-03914264⟩
38 View
23 Download

Altmetric

Share

Gmail Facebook X LinkedIn More