Complete genome sequencing of three clade-1 xanthomonads reveals genetic determinants for a lateral flagellin and the biosynthesis of coronatine-like molecules in Xanthomonas - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Journal Articles Phytopathology Year : 2023

Complete genome sequencing of three clade-1 xanthomonads reveals genetic determinants for a lateral flagellin and the biosynthesis of coronatine-like molecules in Xanthomonas

Ildikó Nagy
  • Function : Author
Ralf Koebnik

Abstract

Evolutionarily early-branching xanthomonads, also referred to as clade-1 xanthomonads, include major plant pathogens, most of which colonize monocotyledonous plants. Seven species have been validly described, among them the two sugarcane pathogens Xanthomonas albilineans and Xanthomonas sacchari, and Xanthomonas translucens, which infects small-grain cereals, diverse grasses, but also asparagus and pistachio trees. Single-gene sequencing and genomic approaches indicated that this clade likely contains more, yet undescribed species. In this study, we sequenced representative strains of three novel species using long-read sequencing technology. Xanthomonas campestris pv. phormiicola strain CFBP 8444 causes bacterial streak on New Zealand flax, another monocotyledonous plant. Xanthomonas sp. strain CFBP 8443 has been isolated from common bean and Xanthomonas sp. strain CFBP 8445 originated from banana. Complete assemblies of the chromosomes confirmed their unique phylogenetic position within clade 1 of Xanthomonas. Genome mining revealed novel genetic features, hitherto undescribed in other members of the Xanthomonas genus. In strain CFBP 8444, we identified genes related to the synthesis of coronatine-like compounds, a phytotoxin produced by several pseudomonads, which raises interesting questions about the evolution and pathogenicity of this pathogen. In addition, strain CFBP 8444 was found to contain a second, atypical flagellar gene cluster in addition to the canonical flagellar gene cluster. Overall, this research represents an important step toward better understanding the evolutionary history and biology of early-branching xanthomonads.
Fichier principal
Vignette du fichier
Peduzzi_2023_Post-print.pdf (1.1 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03978256 , version 1 (13-04-2023)

Identifiers

Cite

Chloé Peduzzi, Angeliki Sagia, Daiva Burokiene, Ildikó Nagy, Marion Fischer-Le Saux, et al.. Complete genome sequencing of three clade-1 xanthomonads reveals genetic determinants for a lateral flagellin and the biosynthesis of coronatine-like molecules in Xanthomonas. Phytopathology, 2023, pp.PHYTO-10-22-0373-SC. ⟨10.1094/phyto-10-22-0373-sc⟩. ⟨hal-03978256⟩
65 View
97 Download

Altmetric

Share

More