HiCDOC : A/B compartment detection and differential analysis - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Access content directly
Software Year : 2023

HiCDOC : A/B compartment detection and differential analysis

Abstract

HiCDOC normalizes intrachromosomal Hi-C matrices, uses unsupervised learning to predict A/B compartments from multiple replicates, and detects significant compartment changes between experiment conditions. It provides a collection of functions assembled into a pipeline to filter and normalize the data, predict the compartments and visualize the results. It accepts several type of data: tabular `.tsv` files, Cooler `.cool` or `.mcool` files, Juicer `.hic` files or HiC-Pro `.matrix` and `.bed` files.

Cite

Cyril Kurylo, Matthias Zytnicki, Sylvain Foissac, Élise Maigné. HiCDOC : A/B compartment detection and differential analysis. 2023, ⟨swh:1:dir:5d9eea392428649c41d31ed01fe6bf69b899a574;visit=swh:1:snp:d754577801ec4863675d53f6864d975b7c831479;anchor=swh:1:rev:35e459d9583f99c610f9f1a7c5886883ca6d8c0b⟩. ⟨hal-04212832⟩
43 View
5 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More