HiCDOC : A/B compartment detection and differential analysis
Résumé
HiCDOC normalizes intrachromosomal Hi-C matrices, uses unsupervised learning to predict A/B compartments from multiple replicates, and detects significant compartment changes between experiment conditions. It provides a collection of functions assembled into a pipeline to filter and normalize the data, predict the compartments and visualize the results. It accepts several type of data: tabular `.tsv` files, Cooler `.cool` or `.mcool` files, Juicer `.hic` files or HiC-Pro `.matrix` and `.bed` files.