Article Dans Une Revue Drones Année : 2024

Estimating Total Length of Partially Submerged Crocodylians from Drone Imagery

Xander Combrink
  • Fonction : Auteur
  • PersonId : 1368838
Pierre Charruau
Joseph E Colbert
  • Fonction : Auteur
  • PersonId : 1368843
Asghar Mobaraki
  • Fonction : Auteur
  • PersonId : 1368844
Allan R Woodward
  • Fonction : Auteur
  • PersonId : 1368845
Ruchira Somaweera
  • Fonction : Auteur
  • PersonId : 1368846
Marisa Tellez
  • Fonction : Auteur
  • PersonId : 1368847
Matthew Brien
  • Fonction : Auteur
  • PersonId : 1368848

Résumé

Understanding the demographic structure is vital for wildlife research and conservation. For crocodylians, accurately estimating total length and demographic class usually necessitates close observation or capture, often of partially immersed individuals, leading to potential imprecision and risk. Drone technology offers a bias-free, safer alternative for classification. We evaluated the effectiveness of drone photos combined with head length allometric relationships to estimate total length, and propose a standardized method for drone-based crocodylian demographic classification. We evaluated error sources related to drone flight parameters using standardized targets. An allometric framework correlating head to total length for 17 crocodylian species was developed, incorporating confidence intervals to account for imprecision sources (e.g., allometric accuracy, head inclination, observer bias, terrain variability). This method was applied to wild crocodylians through drone photography. Target measurements from drone imagery, across various resolutions and sizes, were consistent with their actual dimensions. Terrain effects were less impactful than Ground-Sample Distance (GSD) errors from photogrammetric software. The allometric framework predicted lengths within ≃11–18% accuracy across species, with natural allometric variation among individuals explaining much of this range. Compared to traditional methods that can be subjective and risky, our drone-based approach is objective, efficient, fast, cheap, non-invasive, and safe. Nonetheless, further refinements are needed to extend survey times and better include smaller size classes.
Fichier principal
Vignette du fichier
Aubert_etal_ drones_2024.pdf (1.92 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04524511 , version 1 (28-03-2024)

Licence

Identifiants

Citer

Clément Aubert, Gilles Le Moguédec, Alvaro Velasco, Xander Combrink, Jeffrey W Lang, et al.. Estimating Total Length of Partially Submerged Crocodylians from Drone Imagery. Drones, 2024, 8, ⟨10.3390/drones8030115⟩. ⟨hal-04524511⟩
80 Consultations
33 Téléchargements

Altmetric

Partager

More