Expression of key genes of fatty acid oxidation, including adiponectin receptors, in skeletal muscle of Type 2 diabetic patients - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Access content directly
Journal Articles Diabetologia Year : 2004

Expression of key genes of fatty acid oxidation, including adiponectin receptors, in skeletal muscle of Type 2 diabetic patients

Abstract

Aims/hypothesis. Defective oxidation of long-chain fatty acids is a feature of insulin resistance and Type 2 diabetes. Our aim was to compare the expression levels of the genes encoding the major proteins and enzymes of this pathway in skeletal muscle of healthy subjects and Type 2 diabetic patients. Methods. The basal and insulin-regulated mRNA concentration of 16 genes was quantified using real-time PCR in skeletal muscle biopsies taken before and at the end of a 3-hour hyperinsulinaemic-euglycaemic clamp in healthy lean subjects and in insulin-resistant obese patients with manifest Type 2 diabetes. Results. Acetyl CoA carboxylase-2 mRNA expression was increased 2.5-fold in the muscle of the diabetic patients. The expression of carnitine palmitoyl transferase-1, of the two adiponectin receptors and of genes involved in fatty acid transport and activation was not altered in diabetic patients. Hyperinsulinaemia for 3 hours increased the expression of several genes of fatty acid oxidation, including adiponectin receptor-1 and peroxisome proliferator-activated receptor gamma coactivator-1alpha. It also reduced pyruvate dehydrogenase 4 mRNA levels. The effects of insulin on gene expression were markedly altered in the muscle of Type 2 diabetic patients except for adiponectin receptor-1 and pyruvate dehydrogenase 4 mRNAs. Conclusions/interpretation. The expression of adiponectin receptors was not altered in the muscle of Type 2 diabetic patients. The observed overexpression of acetyl CoA carboxylase-2 is consistent with the hypothesis that increased skeletal muscle malonyl CoA concentrations in Type 2 diabetes may contribute to the inhibition of long-chain fatty acid oxidation.

Dates and versions

hal-04667435 , version 1 (04-08-2024)

Identifiers

Cite

C. Debard, M. Laville, V. Berbe, E. Loizon, C. Guillet, et al.. Expression of key genes of fatty acid oxidation, including adiponectin receptors, in skeletal muscle of Type 2 diabetic patients. Diabetologia, 2004, 47 (5), pp.917-925. ⟨10.1007/s00125-004-1394-7⟩. ⟨hal-04667435⟩
19 View
0 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More