Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

A factor model to analyze heterogeneity in gene expression.

Abstract : BACKGROUND: Microarray technology allows the simultaneous analysis of thousands of genes within a single experiment. Significance analyses of transcriptomic data ignore the gene dependence structure. This leads to correlation among test statistics which affects a strong control of the false discovery proportion. A recent method called FAMT allows capturing the gene dependence into factors in order to improve high-dimensional multiple testing procedures. In the subsequent analyses aiming at a functional characterization of the differentially expressed genes, our study shows how these factors can be used both to identify the components of expression heterogeneity and to give more insight into the underlying biological processes. RESULTS: The use of factors to characterize simple patterns of heterogeneity is first demonstrated on illustrative gene expression data sets. An expression data set primarily generated to map QTL for fatness in chickens is then analyzed. Contrarily to the analysis based on the raw data, a relevant functional information about a QTL region is revealed by factor-adjustment of the gene expressions. Additionally, the interpretation of the independent factors regarding known information about both experimental design and genes shows that some factors may have different and complex origins. CONCLUSIONS: As biological information and technological biases are identified in what was before simply considered as statistical noise, analyzing heterogeneity in gene expression yields a new point of view on transcriptomic data.
Keywords : obesity genomics
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger
Déposant : Céline Martel <>
Soumis le : vendredi 29 mai 2020 - 22:20:48
Dernière modification le : jeudi 8 octobre 2020 - 03:06:33


Fichiers éditeurs autorisés sur une archive ouverte



Yuna Blum, Guillaume Le Mignon, Sandrine Lagarrigue, David Causeur. A factor model to analyze heterogeneity in gene expression.. BMC Bioinformatics, BioMed Central, 2010, 11 (368), pp.368. ⟨10.1186/1471-2105-11-368⟩. ⟨hal-00729426⟩



Consultations de la notice


Téléchargements de fichiers