Metabolomic and Ecdysteroid Variations in Anopheles gambiae s.l. Mosquitoes Exposed to the Stressful Conditions of the Dry Season in Burkina Faso, West Africa
Résumé
This study explored the metabolic adjustments prompted by a switch between the rainy and dry season conditions in the African malaria mosquitoes Anopheles gambiae (M and S molecular forms) and Anopheles arabiensis. Mosquitoes were reared in contrasted experimental conditions reflecting environmental variation in Burkina Faso. Thirty-five metabolites (including sugars, polyols, and amino acids) were monitored in newly emerged males and females, and their ecdysteroid titers were determined. Metabolomic signatures were remarkably similar across species, when specimens of same age and sex were reared under identical experimental conditions. In males and females, amino acids (including glycine, leucine, phenylanine, serine, threonine, and valine) were accumulated in 1-hold mosquitoes, then decreased 24 h after emergence, probably reflecting adult maturation and the amino acid-consuming process of cuticle sclerotisation. In turn, elevated amounts of alanine and proline in 24-h-old mosquitoes may assist the development of flight ability. Lower concentration of tricarboxylic acid cycle intermediates and isoleucine characterized older females reared under dry season conditions, suggesting metabolic and reproduction depression. In all cases, ecdysteroid concentration was much higher in males than in females, with significant seasonal variation in males. This might reflect a unique role of these hormones in shaping reproductive strategies and population demography in the An. gambiae s.l. species complex, further contributing to local adaptation in a highly fluctuating environment.