Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

An empirical Bayesian method for estimating biological networks from temporal microarray data

Abstract : Gene regulatory networks refer to the interactions that occur among genes and other cellular products. The topology of these networks can be inferred from measurements of changes in gene expression over time. However, because the measurement device (i.e., microarrays) typically yields information on thousands of genes over few biological replicates, these systems are quite difficult to elucidate. An approach with proven effectiveness for inferring networks is the Dynamic Bayesian Network. We have developed an iterative empirical Bayesian procedure with a Kalman filter that estimates the posterior distributions of network parameters. We compare our method to similar existing methods on simulated data and real microarray time series data. We find that the proposed method performs comparably on both model-based and data-based simulations in considerably less computational time. The R and C code used to implement the proposed method are publicly available in the R package ebdbNet.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01193424
Déposant : Archive Ouverte Prodinra <>
Soumis le : vendredi 4 septembre 2015 - 20:15:43
Dernière modification le : dimanche 31 mai 2020 - 05:03:16

Lien texte intégral

Identifiants

Collections

Citation

Andrea Rau, Florence Jaffrezic, Jean Louis Foulley, Rebecca W. Doerge. An empirical Bayesian method for estimating biological networks from temporal microarray data. Statistical Applications in Genetics and Molecular Biology, De Gruyter, 2010, 9, online (1), Non paginé. ⟨10.2202/1544-6115.1513⟩. ⟨hal-01193424⟩

Partager

Métriques

Consultations de la notice

147