Cultivar-specific transcriptome and pan-transcriptome reconstruction of tetraploid potato - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Access content directly
Preprints, Working Papers, ... (Preprint) Year : 2019

Cultivar-specific transcriptome and pan-transcriptome reconstruction of tetraploid potato


Background : Although the reference genome of Solanum tuberosum group Phureja double-monoploid (DM) clone is available, knowledge on the genetic diversity of the highly heterozygous tetraploid group Tuberosum, representing most cultivated varieties, remains largely unexplored. This lack of knowledge hinders further progress in potato research and its subsequent applications in breeding. Results : For the DM genome assembly, two only partially-overlapping gene models exist differing in a unique set of genes and intron/exon structure predictions. First step was to merge and manually curate the merged gene model, creating a union of genes in Phureja scaffold. We next compiled available RNA-Seq datasets (cca. 1.5 billion reads) for three tetraploid potato genotypes (cultivar Désirée, cultivar Rywal, and breeding clone PW363) with diverse breeding pedigrees. Short-read transcriptomes were assembled using CLC, Trinity, Velvet, and rnaSPAdes de novo assemblers using different settings to test for optimal outcome. In addition, for cultivar Rywal, PacBio Iso-Seq full-length transcriptome sequencing was also performed. Revised EvidentialGene redundancy-reducing pipeline was employed to produce accurate and complete cultivar-specific transcriptomes from assemblers output, as well as to attain the pan-transcriptome. Due to being the most diverse dataset in terms of tissues (stem, seedlings and roots) and experimental conditions, cv. Désirée was the most complete transcriptome (95.8% BUSCO completeness). For cv. Rywal and breeding clone PW363 data were available for leaf samples only and the resulting transcriptomes were less complete than cv. Désirée (89.8% and 89.3% BUSCO completeness, respectively). Cross comparison of these cultivar-specific transcriptomes and merged DM gene model suggests that the core potato transcriptome is comprised of 16,339 genes. The pan-transcriptome contains a total of 95,779 transcripts, of which 54,614 transcripts are not present in the Phureja genome. These represent the variants of the novel genes found in the potato pan-genome. Conclusions : Our analysis shows that the available gene model of double-monoploid potato from group Phureja is, to some degree, not complete. The generated transcriptomes and pan-transcriptome represent a valuable resource for potato gene variability exploration, high-throughput –omics analyses, and future breeding programmes.
Fichier principal
Vignette du fichier
Petek-BioRxiv-2019-CC-BY-NC_1.pdf (1.12 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

hal-02788736 , version 1 (05-06-2020)


Attribution - NonCommercial



Marko Petek, Maja Zagorščak, Sheri Sanders, Špela Tomaž, Elizabeth Tseng, et al.. Cultivar-specific transcriptome and pan-transcriptome reconstruction of tetraploid potato. 2019. ⟨hal-02788736⟩
22 View
52 Download



Gmail Facebook X LinkedIn More