Skip to Main content Skip to Navigation
New interface
Journal articles

The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis

F. Martin 1 A. Aerts 2 D. Ahrén 3 A. Brun 1 E. G. J. Danchin 4 F. Duchaussoy 1 J. Gibon 1 Annegret Kohler 1 E. Lindquist 2 V. Pereda 1 A. Salamov 2 H. J. Shapiro 2 J. Wuyts 1, 5 D. Blaudez 1 M. Buée 1 P. Brokstein 2 B. Canbäck 3 D. Cohen 1 P. E. Courty 1 P. M. Coutinho 4 C. Delaruelle 1 J. C. Detter 2 Aurélie Deveau 1 S. Difazio 6 Sébastien Duplessis 1 L. Fraissinet-Tachet 7 E. Lucic 1 P. Frey-Klett 1 Claire Veneault-Fourrey 1 I. Feussner 8 G. Gay 7 J. Grimwood 9 P. J. Hoegger10 10 P. Jain 11 S. Kilaru 10 J. Labbé 1 Y. C. Lin 5 V. Legué 1 F. Le Tacon 1 R. Marmeisse 7 D. Melayah 7 B. Montanini 1 M. Muratet 11 U. Nehls 12 H. Niculita-Hirzel 13 M. P. Oudot-Le Secq 1 M. Peter 1, 14 H. Quesneville 15 B. Rajashekar 3 M. Reich 10 N. Rouhier 1 J. Schmutz 9 T. Yin 16 M. Chalot 1 Bernard Henrissat 1 U. Kües 10 S. Lucas 2 Y. van de Peer 5 G. K. Podila 11 A. Polle 10 P. J. Pukkila 17 P. M. Richardson 2 P. Rouzé 5, 18 I. R. Sanders 13 J. E. Stajich 19 A. Tunlid 3 G. Tuskan 16 I. V. Grigoriev 2 
Abstract : Mycorrhizal symbioses—the union of roots and soil fungi—are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants1,2. Boreal, temperate and montane forests all depend on ectomycorrhizae1. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles that are fundamental to sustainable plant productivity.
Complete list of metadata

Cited literature [51 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/halsde-00261893
Contributor : Christine Delorme Connect in order to contact the contributor
Submitted on : Sunday, May 31, 2020 - 10:25:12 AM
Last modification on : Tuesday, November 29, 2022 - 11:56:13 AM

File

martin_2008_1.pdf
Publisher files allowed on an open archive

Identifiers

Citation

F. Martin, A. Aerts, D. Ahrén, A. Brun, E. G. J. Danchin, et al.. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature, 2008, 452 (7183), pp.88-93. ⟨10.1038/nature06556⟩. ⟨halsde-00261893⟩

Share

Metrics

Record views

704

Files downloads

45