A study of the DNA damage checkpoint in Candida albicans: uncoupling of the functions of Rad53 in DNA repair, cell cycle regulation and genotoxic stress-induced polarized growth. - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Access content directly
Journal Articles Molecular Microbiology Year : 2013

A study of the DNA damage checkpoint in Candida albicans: uncoupling of the functions of Rad53 in DNA repair, cell cycle regulation and genotoxic stress-induced polarized growth.

Abstract

In response to genotoxic stress (GS), Candida albicans can undergo polarized growth and massive genome rearrangements including loss-of-heterozygosity (LOH) events. We evaluated the contribution of the CaRad53p and CaDun1p kinases of the DNA damage checkpoint (DDCP) in these processes. Characterization of C. albicans rad53ΔΔ and dun1ΔΔ mutants revealed that the two kinases were involved in the maintenance of heterozygosity. SNP-RFLP typing and whole-genome sequencing of rad53ΔΔ isolates having undergone a LOH revealed that, according to the chromosome on which LOH had occurred, these were predominantly due to break-induced replication/mitotic cross-over or chromosome loss. Loss of CaRAD53 also resulted in frequent aneuploidies. Deletion of CaDUN1 led to an increase in recombination-dependent LOH but did not trigger aneuploidies. It also increased GS sensitivity but did not impair GS-induced polarized growth contrary to CaRAD53 deletion. Characterization of CaRad53p site-directed mutants demonstrated that its kinase activity and N-terminal phosphorylation sites were crucial for its function in the resistance to GS, maintenance of heterozygosity, cell cycle regulation and polarized growth. Moreover, using phosphomimic mutants, we revealed an uncoupling of the functions of CaRad53p in these different processes, thus providing a novel understanding of how the DDCP may regulate downstream events in response to GS.
Embargoed file
Embargoed file
Visibility date is undetermined
Loading...

Dates and versions

pasteur-01522639 , version 1 (15-05-2017)

Identifiers

Cite

Raphaël Loll-Krippleber, Christophe d'Enfert, Adeline Feri, Dorothée Diogo, Aurélie Perin, et al.. A study of the DNA damage checkpoint in Candida albicans: uncoupling of the functions of Rad53 in DNA repair, cell cycle regulation and genotoxic stress-induced polarized growth.. Molecular Microbiology, 2013, 91 (3), pp.452-71. ⟨10.1111/mmi.12471⟩. ⟨pasteur-01522639⟩
55 View
2 Download

Altmetric

Share

Gmail Facebook X LinkedIn More