Article Dans Une Revue Journal of Computational Physics Année : 2013

Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation

Conditions d'entrée et initiales pour la simulation numérique directe basée sur l'assimilation variationnelle de données

Résumé

A method for generating inflow conditions for direct numerical simulations (DNS) of spatially-developing flows is presented. The proposed method is based on variational data assimilation and adjoint-based optimization. The estimation is conducted through an iterative process involving a forward integration of a given dynamical model followed by a backward integration of an adjoint system defined by the adjoint of the discrete scheme associated to the dynamical system. The approach's robustness is evaluated on two synthetic velocity field sequences provided by numerical simulation of a mixing layer and a wake flow behind a cylinder. The performance of the technique is also illustrated in a real world application by using noisy large scale PIV measurements. This method denoises experimental velocity fields and reconstructs a continuous trajectory of motion fields from discrete and unstable measurements.
Fichier principal
Vignette du fichier
pub00037748.pdf (3.09 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02598218 , version 1 (15-05-2020)

Identifiants

Citer

Alejandro Gronskis, Dominique Heitz, Etienne Mémin. Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation. Journal of Computational Physics, 2013, 242, pp.480-497. ⟨hal-02598218⟩
37 Consultations
71 Téléchargements

Partager

More