Efficiency of an air curtain as an anti-insect barrier: the honey bee as a model insect - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue Pest Management Science Année : 2018

Efficiency of an air curtain as an anti-insect barrier: the honey bee as a model insect

Guillaume Kairo
  • Fonction : co premier-auteur
Maryline Pioz
Michel Pelissier
  • Fonction : Auteur
  • PersonId : 1205184
Jean-Luc Brunet
Luc Belzunces
Connectez-vous pour contacter l'auteur

Résumé

BACKGROUND Vector‐borne diseases are of high concern for human, animal and plant health. In humans, such diseases are often transmitted by flying insects. Flying insects stop their flight when their kinetic energy cannot compensate for the wind speed. Here, the efficiency of an air curtain in preventing insects from entering a building was studied using the honey bee as a model. RESULTS Bees were trained to visit a food source placed in a building. The air curtain was tested with strongly motivated bees, when the visiting activity was very high. Airflow velocity was modulated by setting an air curtain device at different voltages. At the nominal voltage, the anti‐insect efficiency was 99.9 ± 0.2% compared with both the number of bees at a given time in the absence of the air curtain and the number of bees before the activation of the air curtain. The efficiency decreased as the airflow velocity decreased. CONCLUSION The results show that an air curtain operating at an airflow velocity of 7.5 m/sec may prevent a strong flyer with high kinetic energy, such as the honey bee, from entering a building. Thus, air curtains offer an alternative approach for combating vector‐borne diseases.

Dates et versions

hal-02623628 , version 1 (26-05-2020)

Identifiants

Citer

Guillaume Kairo, Maryline Pioz, Sylvie Tchamitchian, Michel Pelissier, Jean-Luc Brunet, et al.. Efficiency of an air curtain as an anti-insect barrier: the honey bee as a model insect. Pest Management Science, 2018, 74, pp.2707-2715. ⟨10.1002/ps.5090⟩. ⟨hal-02623628⟩
17 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More