Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Bayesian Functional Linear Regression with Sparse Step Functions

Abstract : The functional linear regression model is a common tool to determine the relationship between a scalar outcome and a functional predictor seen as a function of time. This paper focuses on the Bayesian estimation of the support of the coefficient function. To this aim we propose a parsimonious and adaptive decomposition of the coefficient function as a step function, and a model including a prior distribution that we name Bayesian functional Linear regression with Sparse Step functions (Bliss). The aim of the method is to recover periods of time which influence the most the outcome. A Bayes estimator of the support is built with a specific loss function, as well as two Bayes estimators of the coefficient function, a first one which is smooth and a second one which is a step function. The performance of the proposed methodology is analysed on various synthetic datasets and is illustrated on a black Périgord truffle dataset to study the influence of rainfall on the production.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.inrae.fr/hal-02628016
Déposant : Migration Prodinra <>
Soumis le : mardi 26 mai 2020 - 22:02:27
Dernière modification le : lundi 14 décembre 2020 - 15:36:33

Fichier

publis18-mistea-024_Grollemund...
Fichiers éditeurs autorisés sur une archive ouverte

Licence


Copyright (Tous droits réservés)

Identifiants

Citation

Paul-Marie Grollemund, Christophe Abraham, Meïli Baragatti, Pierre Pudlo. Bayesian Functional Linear Regression with Sparse Step Functions. Bayesian Analysis, International Society for Bayesian Analysis, 2019, 14 (1), pp.111-135. ⟨10.1214/18-BA1095⟩. ⟨hal-02628016⟩

Partager

Métriques

Consultations de la notice

588

Téléchargements de fichiers

73