Characterization of phosphate solubilizing rhizobacteria associated with pea (Pisum sativum L.) isolated from two agricultural soils
Résumé
Phosphorous (P) availability is a major concern in European agriculture where reserves are limited. In the case of pea (Pisum sativum L.), one of the most important legumes in the human diet, P has specific effects on nodulation and N-2 fixation. Therefore, when biofertilization schemes are considered for pea cropping, it is very important to include symbiotic dinitrogen-fixing bacteria as well as phosphate-solubilizing bacteria (PSB). In this study sixteen PSB were isolated from the rhizosphere of two pea cultivars in two French soils with different characteristics. They were phenotypically and genotypically diverse displaying 9 different Two Primers-Random Amplified Polymorphic DNA (TP-RAPD) patterns. The 16S rRNA gene analysis of representative strains showed that they belong to four highly divergent phylogenetic groups. Most of the PSB strains belonged to the genus Pseudomonas and were closely related to Pseudomonas baetica, P. lutea, P. azotoformans, P. jessenii and P. frederiksbergensis. Other strains from the genus Burkholderia were closely related to B. caledonica and those from the genus Rhizobium to R. grahamii. The single strain of genus Bacillus was close to Bacillus toyonensis. Some phylogenetic groups to which our PSB strains belong are widely distributed in plant rhizospheres in different countries and continents. This is particularly interesting in the case of strains from the phylogenetic group of P. fluorescens which includes PSB strains with high ability to solubilize phosphate indicating that they may be used as biofertilizers in many soils.