Interaction between Shadoo and PrP Affects the PrP-Folding Pathway - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue Journal of Virology Année : 2015

Interaction between Shadoo and PrP Affects the PrP-Folding Pathway

Résumé

Prion diseases are characterized by conformational changes of a cellular prion protein (PrP(C)) into a β-sheet-enriched and aggregated conformer (PrP(Sc)). Shadoo (Sho), a member of the prion protein family, is expressed in the central nervous system (CNS) and is highly conserved among vertebrates. On the basis of histoanatomical colocalization and sequence similarities, it is suspected that Sho and PrP may be functionally related. The downregulation of Sho expression during prion pathology and the direct interaction between Sho and PrP, as revealed by two-hybrid analysis, suggest a relationship between Sho and prion replication. Using biochemical and biophysical approaches, we demonstrate that Sho forms a 1:1 complex with full-length PrP with a dissociation constant in the micromolar range, and this interaction consequently modifies the PrP-folding pathway. Using a truncated PrP that mimics the C-terminal C1 fragment, an allosteric binding behavior with a Hill number of 4 was observed, suggesting that at least a tetramerization state occurs. A cell-based prion titration assay performed with different concentrations of Sho revealed an increase in the PrP(Sc) conversion rate in the presence of Sho. Collectively, our observations suggest that Sho can affect the prion replication process by (i) acting as a holdase and (ii) interfering with the dominant-negative inhibitor effect of the C1 fragment.Since the inception of the prion theory, the search for a cofactor involved in the conversion process has been an active field of research. Although the PrP interactome presents a broad landscape, candidates corresponding to specific criteria for cofactors are currently missing. Here, we describe for the first time that Sho can affect PrP structural dynamics and therefore increase the prion conversion rate. A biochemical characterization of Sho-PrP indicates that Sho acts as an ATP-independent holdase.

Dates et versions

hal-02636090 , version 1 (27-05-2020)

Identifiants

Citer

Danica Ciric, Charles-Adrien Richard, Mohammed M. Moudjou, Jerome Chapuis, Pierre Sibille, et al.. Interaction between Shadoo and PrP Affects the PrP-Folding Pathway. Journal of Virology, 2015, 89 (12), pp.6287-6293. ⟨10.1128/JVI.03429-14⟩. ⟨hal-02636090⟩
13 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More