Constrained allocation flux balance analysis - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Article Dans Une Revue PLoS Computational Biology Année : 2016

Constrained allocation flux balance analysis

Résumé

New experimental results on bacterial growth inspire a novel top-down approach to study cell metabolism, combining mass balance and proteomic constraints to extend and complement Flux Balance Analysis. We introduce here Constrained Allocation Flux Balance Analysis, CAFBA, in which the biosynthetic costs associated to growth are accounted for in an effective way through a single additional genome-wide constraint. Its roots lie in the experimentally observed pattern of proteome allocation for metabolic functions, allowing to bridge regulation and metabolism in a transparent way under the principle of growth-rate maximization. We provide a simple method to solve CAFBA efficiently and propose an “ensemble averaging” procedure to account for unknown protein costs. Applying this approach to modeling E. coli metabolism, we find that, as the growth rate increases, CAFBA solutions cross over from respiratory, growth-yield maximizing states (preferred at slow growth) to fermentative states with carbon overflow (preferred at fast growth). In addition, CAFBA allows for quantitatively accurate predictions on the rate of acetate excretion and growth yield based on only 3 parameters determined by empirical growth laws.
Fichier principal
Vignette du fichier
2016_Mory_Plos Computational Biology_1.pdf (3.08 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02636532 , version 1 (27-05-2020)

Identifiants

Citer

Matteo Mori, Terence Hwa, Olivier C. Martin, Andrea de Martino, Enzo Marinari. Constrained allocation flux balance analysis. PLoS Computational Biology, 2016, 12 (6), pp.1-24. ⟨10.1371/journal.pcbi.1004913⟩. ⟨hal-02636532⟩
56 Consultations
38 Téléchargements

Altmetric

Partager

More