A thin layer-based amperometric enzyme immunoassay for the rapid and sensitive diagnosis of respiratory syncytial virus infections
Résumé
A simple electrochemical sandwich immunoassay involving a polystyrene microarray slide coated with monoclonal capture antibodies and carbon screen-printed sensors (SPS) was designed for the rapid diagnosis of respiratory syncytial virus (RSV). The detection of the antibody-antigen complex formation relied on the use of a horseradish peroxidase conjugate. Its chronoamperometric measurement detection was performed by confining a droplet of H2O2/3.3',5,5'-tetramethylbenzidine enzyme substrate/mediator solution within a thin layer between one spot of the microarray and the surface of one screen-printed electrochemical cell. The accumulation of the enzyme product in the thin film of liquid enhanced the electrochemical response which allowed the development of a rapid (25 min) and sensitive thin layer-based amperometric (TLA) enzyme immunoassay. The method was successfully compared to commercially-available immunofluorescent and real-time PCR assays for RSV testing in respiratory secretion clinical samples. This suggests that owing to its rapidity, convenience, low-cost, portability and ability to provide quantified results, the reported concept could be a promising point-of-care diagnostic tool to screen patients with suspected respiratory infection or other types of infectious diseases.