Comparative analysis of P2-type remnant prophage loci in Xenorhabdus bovienii and Xenorhabdus nematophila required for xenorhabdicin production.
Résumé
The xnp1 remnant P2-type prophage of Xenorhabdus nematophila produces xenorhabdicin that is active against closely related species. Xenorhabdicin had not been characterized previously in other Xenorhabdus species. Here, we show xenorhabdicin production in six different strains of Xenorhabdus bovienii. The sequenced genome of X. bovienii SS-2004 was found to possess a highly conserved remnant P2-type cluster (xbp1). Inactivation of the xbpS1 sheath gene resulted in loss of bacteriocin activity, indicating that the xbp1 locus was required for xenorhabdicin production. xbp1 and xnp1 contain a CI-type repressor, a dinI gene involved in stabilization of ssDNA-RecA complexes and are inducible with mitomycin C, suggesting that both loci are regulated by cleavage of the CI repressor. Both xnp1 and xbp1 lack typical P2-type lysis genes but contain a predicted endolysin gene (enp) that may be involved in cell lysis. The main tail fibers of xnp1 and xbp1 are mosaic structures with divergent C-terminal regions suggesting they differ in host specificity. Several genes encoding C-terminal tail fiber fragments are present in the same position in xnp1 and xbp1. Recombination between the main fiber genes and the C-terminal fragments could potentially expand the host range specificity of xenorhabdicin in the respective strains.