Water taste transduction pathway is calcium dependent in Drosophila
Résumé
In mammals, detection of osmolarity by the gustatory system was overlooked until recently. In insects, specific taste receptor neurons detect hypoosmotic stimuli and are commonly called “W” (water) cells. W cells are easy to access in vivo and represent a good model to study the transduction of hypoosmotic stimuli. Using pharmacological and genetic approaches in Drosophila, we show that tarsal W cell firing activity depends on the concentration of external calcium bathing the dendrite. This dependence was confirmed by the strong inhibition of W cell responses to hypoosmotic stimuli by lanthanum (IC50 = 8 nM), an ion known to inhibit calcium-permeable channels. Downstream, the transduction pathway likely involves calmodulin because calmodulin antagonists such as W-7 (IC50 = 2 μM) and fluphenazine (IC50 = 30 μM) prevented the activation of the W cell by hypoosmotic stimuli. A protein kinase C (PKC) may also be involved as W cell responses were blocked by PKC inhibitors, chelerythrine (IC50 = 20 μM) and staurosporine (IC50 = 30 μM). It was also reduced when expressing an inhibitory pseudosubstrate of PKC in gustatory receptor neurons. In the rat, the transduction pathway underlying low osmolarity detection involves aquaporin and swelling-activated ion channels. Our study suggests that the transduction pathway of hypoosmotic stimuli in insects differs from mammals.
Domaines
AutreOrigine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...