Effect of a transient perturbation on marine bacterial communities with contrasting history
Résumé
The aim is to evaluate the importance of the bacterial composition on the resilience of the organic matter assimilation in the sea. Chemostats were inoculated with coastal and offshore bacterial communities. Bacterial density and protein synthesis increased before stabilizing, and this response to confinement was more marked in the offshore chemostats. Before the toluene perturbation the community structure in the coastal chemostats remained complex whereas the offshore chemostats became dominated by Alteromonas sp. After the perturbation, bacterial protein synthesis was inhibited before peaking briefly at a level fivefold to that observed before the perturbation and then stabilizing at a level comparable to that before the perturbation. Alteromonas dominated both the coastal and the offshore communities immediately after the perturbation and the coastal communities did not recover their initial complexity. Cell lysis induced by the toluene perturbation favoured the growth of Alteromonas which could initiate growth rapidly in response to the nutrient pulse. Despite their different community structure in situ, the resilience of protein synthesis of coastal and offshore bacterial communities was dependent on Alteromonas, which dominated in the chemostats. Here we show that although Alteromonas sp. dominated in artificial offshore and coastal communities in chemostats, their response time to the shock was different. This suggests that future perturbation studies on resilience in the marine environment should take account of ecosystem history.