Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Access content directly
Journal Articles FEMS Microbiology Letters Year : 2006

Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi

Marc Bellion
  • Function : Author
  • PersonId : 1136834
Mikaël Courbot
  • Function : Author
  • PersonId : 787020
  • IdRef : 076550184
Christophe Jacob
Damien Blaudez
Michel M. Chalot

Abstract

This review focuses on recent evidence that identifies potential extracellular and cellular mechanisms that may be involved in the tolerance of ectomycorrhizal fungi to excess metals in their environment. It appears likely that mechanisms described in the nonmycorrhizal fungal species are used in the ectomycorrhizal fungi as well. These include mechanisms that reduce uptake of metals into the cytosol by extracellular chelation through extruded ligands and binding onto cell-wall components. Intracellular chelation of metals in the cytosol by a range of ligands (glutathione, metallothioneins), or increased efflux from the cytosol out of the cell or into sequestering compartments are also key mechanisms conferring tolerance. Free-radical scavenging capacities through the activity of superoxide dismutase or production of glutathione add another line of defence against the toxic effect of metals.

Keywords

Dates and versions

hal-02660266 , version 1 (30-05-2020)

Identifiers

Cite

Marc Bellion, Mikaël Courbot, Christophe Jacob, Damien Blaudez, Michel M. Chalot. Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiology Letters, 2006, 254 (2), pp.173-181. ⟨10.1111/j.1574-6968.2005.00044.x⟩. ⟨hal-02660266⟩
8 View
0 Download

Altmetric

Share

Gmail Facebook X LinkedIn More