On the kernel rule for function classification - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Article Dans Une Revue Annals of the Institute of Statistical Mathematics Année : 2006

On the kernel rule for function classification

Résumé

Let X be a random variable taking values in a function space F, and let Y be a discrete random label with values 0 and 1. We investigate asymptotic properties of the moving window classification rule based on independent copies of the pair (X, Y ). Contrary to the finite dimensional case, it is shown that the moving window classifier is not universally consistent in the sense that its probability of error may not converge to the Bayes risk for some distributions of (X, Y ). Sufficient conditions both on the space F and the distribution of X are then given to ensure consistency.

Dates et versions

hal-02663588 , version 1 (31-05-2020)

Identifiants

Citer

Christophe Abraham, G. Biau, B. Cadre. On the kernel rule for function classification. Annals of the Institute of Statistical Mathematics, 2006, 58 (3), pp.619-633. ⟨10.1007/s10463-006-0032-1⟩. ⟨hal-02663588⟩
20 Consultations
0 Téléchargements

Altmetric

Partager

More