Experimental Evolution of a Plant Pathogen into a Legume Symbiont
Résumé
Author Summary / Most leguminous plants can form a symbiosis with members of a group of soil bacteria known as rhizobia. On the roots of their hosts, some rhizobia elicit the formation of specialized organs, called nodules, that they colonize intracellularly and within which they fix nitrogen to the benefit of the plant. Rhizobia do not form a homogenous taxon but are phylogenetically dispersed bacteria. How such diversity has emerged is a fascinating, but only partly documented, question. Although horizontal transfer of symbiotic plasmids or groups of genes has played a major role in the spreading of symbiosis, such gene transfer alone is usually unproductive because genetic or ecological barriers restrict evolution of symbiosis. Here, we experimentally evolved the usually phytopathogenic bacterium Ralstonia solanacearum, which was carrying a rhizobial symbiotic plasmid into legume-nodulating and - infecting symbionts. From resequencing the bacterial genomes, we showed that inactivation of a single regulatory gene allowed the transition from pathogenesis to legume symbiosis. Our findings indicate that following the initial transfer of symbiotic genes, subsequent genome adaptation under selection in the plant has been crucial for the evolution and diversification of rhizobia.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...