B-type esterases in the snail Xeropicta derbentina: an enzymological analysis to evaluate their use as biomarkers of pesticide exposure
Résumé
The study was prompted to characterize the B-type esterase activities in the terrestrial snail Xeropicta derbentina and to evaluate its sensitivity to organophosphorus and carbamate pesticides. Specific cholinesterase and carboxylesterase activities were mainly obtained with acetylthiocholine (Km =77.2 mM; Vmax= 38.2 mU/mg protein) and 1-naphthyl acetate (Km= 222 mM, Vmax= 1095 mU/mg protein) substrates, respectively. Acetylcholinesterase activity was concentration-dependently inhibited by chlorpyrifos-oxon, dichlorvos, carbaryl and carbofuran (IC50 =1.35 x 105–3.80 x 108 M). The organophosphate-inhibited acetylcholinesterase activity was reactivated in the presence of pyridine-2- aldoxime methochloride. Carboxylesterase activity was inhibited by organophosphorus insecticides (IC50 =1.20 x 105–2.98 x 108 M) but not by carbamates. B-esterase-specific differences in the inhibition by organophosphates and carbamates are discussed with respect to the buffering capacity of the carboxylesterase to reduce pesticide toxicity. These results suggest that B-type esterases in X. derbentina are suitable biomarkers of pesticide exposure and that this snail could be used as sentinel species in field monitoring of Mediterranean climate regions