Morphology, chemistry and distribution of neoformed spherulites in agricultural land affected by metallurgical point-source pollution
Résumé
Metal distribution patterns in superficial soil horizons of agricultural land affected by metallurgical point-source pollution were studied using optical and electron microscopy, synchrotron radiation and spectroscopy analyses. The site is located in northern France, at the center of a former entry lane to a bunker of World War II, temporarily paved with coarse industrial waste fragments and removed at the end of the war. Thin sections made from undisturbed soil samples from A and B horizons were studied. Optical microscopy revealed the occurrence of yellow micrometer-sized (Ap horizon) and red decamicrometer-sized spherulites (AB, B1g horizons) as well as distinct distribution patterns. The chemical composition of the spherulites was dominated by Fe, Mn, Zn, Pb, Ca, and P. Comparison of calculated Zn stocks, both in the groundmass and in spherulites, showed a quasi-exclusive Zn accumulation in these neoformed features. Their formation was related to several factors: (i) liberation of metal elements due to weathering of waste products, (ii) Ca and P supply from fertilizing practices, (iii) co-precipitation of metal elements and Ca and P in a porous soil environment, after slow exudation of a supersaturated soil solution in more confined mineral media.