Molecular markers linked to genes affecting plant height in wheat using a doubled-haploid population
Résumé
Plant height in wheat (Triticum aestivum L. em Thell) is known to be under polygenic control. Crosses involving genes Rht-B1 and Rht-D1, located on chromosomes 4BS and 4DS, respectively, have shown that these genes have major effects. Two RFLP loci were found to be linked to these two genes (Xfba1-4B with Rht-B1 and Xfba211-4D with Rht-D1) by genotyping a population of F1-derived doubled-haploid lines [‘Courtot’ (Rht-B1b+Rht-D1b)בChinese Spring’]. Using a well-covered molecular marker map, we detected three additional regions and one interaction influencing plant height. These regions, located on chromosome arms 4BS (near the locus Xglk556-4B), 7AL (near the locus Xglk478-7A) and 7BL (near the locus XksuD2-7B) explained between 5% and 20% of the variability for this trait in this cross. The influence of 2 loci from chromosome 4B (Xfba1-4B and Xglk556-4B) suggests that there could be a duplication of Rht-B1 on this chromosome originating from Cv ‘Courtot’. Moreover, an interaction effect between loci from chromosome arms 1AS (near the locus Xfba393-1A) and 1BL (near the locus Xcdo1188-1B) was comparable to or even higher than those of the Rht-B1b and Rht-D1b alleles. A model including the main effects of the loci from chromosomes 4B and 4D (Xfba1-4B, Xglk556-4B and Xfba211-4D) and the interaction effect between Xfba393-1A and Xcdo1188-1B is proposed, which explains about 50% of the variation in plant height. The present results are discussed in relation to those obtained using nullisomic or substitution lines.