The source of dissolved silicon in soil surface solutions of a temperate forest ecosystem - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Communication Dans Un Congrès Année : 2010

The source of dissolved silicon in soil surface solutions of a temperate forest ecosystem

Résumé

Understand the biogeochemical cycle of silicon (Si) in the Earth’s critical zone and the dissolved Si transfer from the litho-pedosphere into the hydrosphere is of great interest for the global balance of biogeochemical processes, including the global C cycle. Indeed, the interaction between Si and C cycles regulates the atmospheric CO2 through the chemical weathering of silicate minerals, the C sequestration in stable organo-mineral compounds and the Si nutrition of phytoplankton CO2-consumers in oceans. H4SiO4 released by mineral dissolution contributes to the critical zone evolution through neoformation of secondary minerals, adsorption onto hydroxyl-bearing phases and recycling by vegetation and return of phytoliths on topsoil. The neoformation of secondary precipitates (clay minerals and phytoliths polymerized in plants) and adsorption of Si onto Fe and Al (hydr)oxides are processes favoring the light Si isotope incorporation, generating rivers enriched in heavy Si isotopes. On the other hand, clay minerals and phytoliths display contrasting Ge/Si ratios since clay-sized weathering products are enriched in Ge and phytoliths are depleted in Ge. Thus stable Si isotope and Ge/Si ratios constitute very interesting proxies to trace transfer of Si in the critical zone. Here we report Si isotopic and Ge/Si ratios of the different Si pools in a temperate soil-tree system (Breuil experimental forest, France) involving various tree species grown on Alumnic Cambisol derived from granitic bedrock. Relative to granitic bedrock (δ30Si = -0.07 ‰; Ge/Si = 2.5 µmol/mol), clay-sized minerals are enriched in 28Si (-1.07 ‰) and Ge (6.2 µmol/mol) while phytoliths are enriched in 28Si (-0.28 to -0.64 ‰) and depleted in Ge (0.1 to 0.3 µmol/mol). This contrast allows us to infer the relative contribution of litho/pedogenic and biogenic mineral dissolution on the release of H4SiO4 in soil surface solutions. The Si-isotope signatures and Ge/Si ratios of forest floor solutions evolve towards lighter values (-1.38 and -2.05 ‰) and higher Ge/Si ratios (2.7 µmol/mol) relative to granite bedrock. This suggests a partial dissolution of 28Si and Ge-enriched secondary clays minerals incorporated by bioturbation in organic-rich horizons, with a fractionation releasing preferentially light Si isotopes. Without considering that organic acids promote dissolution of minerals, clay minerals detected in the organic layer (vermiculite, chlorite, illite and Ca-montmorillonite) are not stable and could have been partially dissolved and transformed in the chemical environment of forest floor. Sources of H4SiO4 in forest floor solutions are influenced by tree species which control the extent of clay-sized minerals mixed in organic horizons by bioturbation and, to a lesser extent, the Si recycling by forest vegetation.
Fichier non déposé

Dates et versions

hal-02820287 , version 1 (06-06-2020)

Identifiants

  • HAL Id : hal-02820287 , version 1
  • PRODINRA : 312218

Citer

Jean-Thomas Cornelis, Bruno Delvaux, Damien Cardinal, Luc André, Jacques J. Ranger, et al.. The source of dissolved silicon in soil surface solutions of a temperate forest ecosystem: Ge/Si and Si isotope ratios as biogeochemical tracers. 2010 AGU Fall Meeting, Dec 2010, San Francisco, United States. ⟨hal-02820287⟩
9 Consultations
0 Téléchargements

Partager

Gmail Facebook X LinkedIn More