Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Reinforcement learning for bioretrosynthesis

Abstract : Metabolic engineering aims to produce chemicals of interest from living organisms, to advance towards greener chemistry. Despite efforts, the research and development process is still long and costly and efficient computational design tools are required to explore the chemical biosynthetic space. Here, we propose to explore the bio-retrosynthesis space using an Artificial Intelligence based approach relying on the Monte Carlo Tree Search reinforcement learning method, guided by chemical similarity. We implement this method in RetroPath RL, an open-source and modular command line tool. We validate it on a golden dataset of 20 manually curated experimental pathways as well as on a larger dataset of 152 successful metabolic engineering projects. Moreover, we provide a novel feature, that suggests potential media supplements to complement the enzymatic synthesis plan.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal.inrae.fr/hal-02905157
Déposant : Jean-Loup Faulon <>
Soumis le : jeudi 23 juillet 2020 - 11:02:14
Dernière modification le : mercredi 19 août 2020 - 13:28:02

Identifiants

Citation

Mathilde Koch, Thomas Duigou, Jean-Loup Faulon. Reinforcement learning for bioretrosynthesis. ACS Synthetic Biology, American Chemical Society, 2019, 9 (1), pp.157-168. ⟨10.1021/acssynbio.9b00447⟩. ⟨hal-02905157⟩

Partager

Métriques

Consultations de la notice

28