Dataset of visible-near infrared handheld and micro-spectrometers – comparison of the prediction accuracy of sugarcane properties - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Article Dans Une Revue (Data Paper) Data in Brief Année : 2020

Dataset of visible-near infrared handheld and micro-spectrometers – comparison of the prediction accuracy of sugarcane properties

Abdallah Zgouz
  • Fonction : Auteur
Vincent Baeten
  • Fonction : Auteur
  • PersonId : 896607
Michael Bonin
  • Fonction : Auteur

Résumé

In the dataset presented in this article, sixty sugarcane samples were analyzed by eight visible / near infrared spectrometers including seven micro-spectrometers. There is one file per spectrometer with sample name, wavelength, absorbance data [calculated as log10 (1/Reflectance)], and another file for reference data, in order to assess the potential of the micro-spectrometers to predict chemical properties of sugarcane samples and to compare their performance with a LabSpec spectrometer. The Partial Least Square Regression (PLS-R) algorithm was used to build calibration models. This open access dataset could also be used to test new chemometric methods, for training, etc.
Fichier principal
Vignette du fichier
Zgouz-DiB-2020-CC-BY-NC-ND.pdf (1.37 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02911762 , version 1 (04-08-2020)

Identifiants

Citer

Abdallah Zgouz, Daphné Heran, Bernard Barthès, Denis Bastianelli, Laurent Bonnal, et al.. Dataset of visible-near infrared handheld and micro-spectrometers – comparison of the prediction accuracy of sugarcane properties. Data in Brief, 2020, 31, pp.106013. ⟨10.1016/j.dib.2020.106013⟩. ⟨hal-02911762⟩
100 Consultations
103 Téléchargements

Altmetric

Partager

More