Development and implementation of eco-genomic tools for aquatic ecosystem biomonitoring: the SYNAQUA French-Swiss program - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue Environmental Science and Pollution Research Année : 2018

Development and implementation of eco-genomic tools for aquatic ecosystem biomonitoring: the SYNAQUA French-Swiss program

Philippe Blancher
  • Fonction : Auteur
Benoit Ferrari
  • Fonction : Auteur
Julie Guéguen
  • Fonction : Auteur
  • PersonId : 927713
Jan Pawlowski
  • Fonction : Auteur
  • PersonId : 880486

Résumé

The effectiveness of environmental protection measures is based on the early identification and diagnosis of anthropogenic pressures. Similarly, restoration actions require precise monitoring of changes in the ecological quality of ecosystems, in order to highlight their effectiveness. Monitoring the ecological quality relies on bioindicators, which are organisms revealing the pressures exerted on the environment through the composition of their communities. Their implementation, based on the morphological identification of species, is expensive because it requires time and experts in taxonomy. Recent genomic tools should provide access to reliable and high-throughput environmental monitoring by directly inferring the composition of bioindicators' communities from their DNA (metabarcoding). The French-Swiss program SYNAQUA (INTERREG France-Switzerland 2017-2019) proposes to use and validate the tools of environmental genomic for biomonitoring and aims ultimately at their implementation in the regulatory bio-surveillance. SYNAQUA will test the metabarcoding approach focusing on two bioindicators, diatoms, and aquatic oligochaetes, which are used in freshwater biomonitoring in France and Switzerland. To go towards the renewal of current biomonitoring practices, SYNAQUA will (1) bring together different actors: scientists, environmental managers, consulting firms, and biotechnological companies, (2) apply this approach on a large scale to demonstrate its relevance, (3) propose robust and reliable tools, and (4) raise public awareness and train the various actors likely to use these new tools. Biomonitoring approaches based on such environmental genomic tools should address the European need for reliable, higher-throughput monitoring to improve the protection of aquatic environments under multiple pressures, guide their restoration , and follow their evolution.
Fichier principal
Vignette du fichier
Lefrancois_ESPR_2018.pdf (1.8 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02916342 , version 1 (17-08-2020)

Identifiants

Citer

Estelle Lefrancois, Laure Apothéloz-Perret-Gentil, Philippe Blancher, Samuel Botreau, Cécile Chardon, et al.. Development and implementation of eco-genomic tools for aquatic ecosystem biomonitoring: the SYNAQUA French-Swiss program. Environmental Science and Pollution Research, 2018, 25 (34), pp.33858-33866. ⟨10.1007/s11356-018-2172-2⟩. ⟨hal-02916342⟩
105 Consultations
199 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More