Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: potential and limitations of physical modeling and machine learning. - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Access content directly
Journal Articles Remote Sensing of Environment Year : 2019

Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: potential and limitations of physical modeling and machine learning.

S. Jay
D. Berveiller
Anice Cheraiet
Fichier principal
Vignette du fichier
Feret_RSE_2019.pdf (1.77 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-02939160 , version 1 (15-09-2020)

Identifiers

Cite

Jean-Baptiste Féret, G. Le Maire, S. Jay, D. Berveiller, Ryad Bendoula, et al.. Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: potential and limitations of physical modeling and machine learning.. Remote Sensing of Environment, 2019, 231, pp.110959. ⟨10.1016/j.rse.2018.11.002⟩. ⟨hal-02939160⟩
726 View
310 Download

Altmetric

Share

Gmail Facebook X LinkedIn More