Structural modeling of cell wall peptidase CwpFM (EntFM) Reveals distinct intrinsically disordered extensions specific to pathogenic Bacillus cereus strains - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue Toxins Année : 2020

Structural modeling of cell wall peptidase CwpFM (EntFM) Reveals distinct intrinsically disordered extensions specific to pathogenic Bacillus cereus strains

Résumé

The emergence of B. cereus as an opportunistic food-borne pathogen has intensified the need to distinguish strains of public health concern. The heterogeneity of the diseases associated with B. cereus infections emphasizes the versatility of these bacteria strains to colonize their host. Nevertheless, the molecular basis of these differences remains unclear. Several toxins are involved in virulence, particularly in gastrointestinal disorders, but there are currently no biological markers able to differentiate pathogenic from harmless strains. We have previously shown that CwpFM is a cell wall peptidase involved in B. cereus virulence. Here, we report a sequence/structure/function characterization of 39 CwpFM sequences, chosen from a collection of B. cereus with diverse virulence phenotypes, from harmless to highly pathogenic strains. CwpFM is homology-modeled in silico as an exported papain-like endopeptidase, with an N-terminal end composed of three successive bacterial Src Homology 3 domains (SH3b 1-3) likely to control protein-protein interactions in signaling pathways, and a C-terminal end that contains a catalytic NLPC_P60 domain primed to form a competent active site. We confirmed in vitro that CwpFM is an endopeptidase with a moderate peptidoglycan hydrolase activity. Remarkably, CwpFMs from pathogenic strains harbor a specific stretch of twenty residues intrinsically disordered, inserted between the SH3b 3 and the catalytic NLPC_P60 domain. This strongly suggests this linker as a marker of differentiation between B. cereus strains. We believe that our findings improve our understanding of the pathogenicity of B. cereus while advancing both clinical diagnosis and food safety. Key Contribution: CwpFM as an exported papain-like endopeptidase with PG hydrolase activity; CwpFMs from pathogenic B. cereus strains harbor a specific disordered linker; the CwpFM linker is a new marker of pathogenic B. cereus strains.
Fichier principal
Vignette du fichier
toxins-12-00593.pdf (8.51 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02939236 , version 1 (15-09-2020)

Identifiants

Citer

Seav-Ly Tran, Delphine Cormontagne, Jasmina Vidic, Gwenaëlle André-Leroux, Nalini Ramarao. Structural modeling of cell wall peptidase CwpFM (EntFM) Reveals distinct intrinsically disordered extensions specific to pathogenic Bacillus cereus strains. Toxins, 2020, 12 (9), pp.593. ⟨10.3390/toxins12090593⟩. ⟨hal-02939236⟩
50 Consultations
23 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More