Article Dans Une Revue Journal of Renewable Materials Année : 2020

Adsorption Behavior of Reducing End-Modified Cellulose Nanocrystals: A Kinetic Study Using Quartz Crystal Microbalance

Résumé

In this work, we studied the adsorption of modified cellulose nanocrys-tals onto solid surfaces by quartz crystal microbalance with dissipation monitoring (QCM-D). Cellulose nanocrystals obtained from tunicate (CNC) were modified at reducing end by amidation reactions. Two different functionalities were investigated: a polyamine dendrimer (CNC-NH 2), which interacts with gold surface by the amine groups; and a biotin moiety (CNC-Biot), which has a strong affinity for the protein streptavidin (SAV). QCM-D results revealed different adsorption behaviors between modified and unmodified CNCs. Hence, unmodified CNCs covered almost all the surface forming a rigid and flat layer whereas reducing end modified CNCs remained rather upright forming a hydrated and viscoelastic layer with lower surface coverage. The analysis of adsorption kinetics allowed the calculation of an apparent collision rate factor, which resulted 10-fold higher for unmodified CNCs compared to reducing end modified CNCs, therefore, demonstrating the different adsorption behavior.

Dates et versions

hal-02942059 , version 1 (17-09-2020)

Identifiants

Citer

Maud Chemin, Céline Moreau, Bernard Cathala, Ana Villares. Adsorption Behavior of Reducing End-Modified Cellulose Nanocrystals: A Kinetic Study Using Quartz Crystal Microbalance. Journal of Renewable Materials, 2020, 8 (1), pp.29-43. ⟨10.32604/jrm.2020.07850⟩. ⟨hal-02942059⟩
8 Consultations
0 Téléchargements

Altmetric

Partager

More