Describing fine spatiotemporal dynamics of rat fleas in an insular ecosystem enlightens abiotic drivers of murine typhus incidence in humans - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue PLoS Neglected Tropical Diseases Année : 2021

Describing fine spatiotemporal dynamics of rat fleas in an insular ecosystem enlightens abiotic drivers of murine typhus incidence in humans

Résumé

vMurine typhus is a flea-borne zoonotic disease that has been recently reported on Reunion Island, an oceanic volcanic island located in the Indian Ocean. Five years of survey implemented by the regional public health services have highlighted a strong temporal and spatial structure of the disease in humans, with cases mainly reported during the humid season and restricted to the dry southern and western portions of the island. We explored the environmental component of this zoonosis in an attempt to decipher the drivers of disease transmission. To do so, we used data from a previously published study (599 small mammals and 175 Xenopsylla fleas from 29 sampling sites) in order to model the spatial distribution of rat fleas throughout the island. In addition, we carried out a longitudinal sampling of rats and their ectoparasites over a 12 months period in six study sites (564 rats and 496 Xenopsylla fleas) in order to model the temporal dynamics of flea infestation of rats. Generalized Linear Models and Support Vector Machine classifiers were developed to model the Xenopsylla Genus Flea Index (GFI) from climatic and environmental variables. Results showed that the spatial distribution and the temporal dynamics of fleas, estimated through the GFI variations, are both strongly controlled by abiotic factors: rainfall, temperature and land cover. The models allowed linking flea abundance trends with murine typhus incidence rates. Flea infestation in rats peaked at the end of the dry season, corresponding to hot and dry conditions, before dropping sharply. This peak of maximal flea abundance preceded the annual peak of human murine typhus cases by a few weeks. Altogether, presented data raise novel questions regarding the ecology of rat fleas while developed models contribute to the design of control measures adapted to each micro region of the island with the aim of lowering the incidence of flea-borne diseases. ew weeks. Altogether, presented data raise novel
Fichier principal
Vignette du fichier
journal.pntd.0009029.pdf (2.69 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03184012 , version 1 (29-03-2021)

Licence

CC0 - Transfert dans le Domaine Public

Identifiants

Citer

Annelise Tran, Gildas Le Minter, Elsa Balleydier, Anaïs Etheves, Morgane Laval, et al.. Describing fine spatiotemporal dynamics of rat fleas in an insular ecosystem enlightens abiotic drivers of murine typhus incidence in humans. PLoS Neglected Tropical Diseases, 2021, 15 (2), pp.e0009029. ⟨10.1371/journal.pntd.0009029⟩. ⟨hal-03184012⟩
131 Consultations
41 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More