Optimizing the early detection of low pathogenic avian influenza H7N9 virus in live bird markets
Résumé
In Southeast Asia, surveillance at live bird markets (LBMs) has been identified as crucial for detecting avian influenza viruses (AIV) and reducing the risk of human infections. However, the design of effective surveillance systems in LBMs remains complex given the rapid turn-over of poultry. We developed a deterministic transmission model to provide guidance for optimizing AIV surveillance efforts. The model was calibrated to fit one of the largest LBMs in northern Vietnam at high risk of low pathogenic H7N9 virus introduction from China to identify the surveillance strategy that optimizes H7N9 detection. Results show that (i) using a portable diagnostic device would slightly reduce the number of infected birds leaving the LBM before the first detection, as compared to a laboratory-based diagnostic strategy, (ii) H7N9 detection could become more timely by sampling birds staying overnight, just before new susceptible birds are introduced at the beginning of a working day, and (iii) banning birds staying overnight would represent an effective intervention to reduce the risk of H7N9 spread but would decrease the likelihood of virus detection if introduced. These strategies should receive high priority in Vietnam and other Asian countries at risk of H7N9 introduction.
Domaines
Sciences du Vivant [q-bio]Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|