Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Global patterns and drivers of soil total phosphorus concentration

Abstract : Soils represent the largest phosphorus (P) reserves on land and determining the amount is a critical first step for identifying sites where ecosystem functioning is potentially limited by P availability. However, global patterns and predictors of soil total P concentration remain poorly understood. To address this knowledge gap, we constructed a database of the total P concentration of 5,275 distributed globally natural soils. We quantified the relative importance of 13 soil-forming variables in predicting soil total P concentration and then made further predictions at the global scale using a random forest approach. Soil total P concentration varied significantly among parent material types, soil orders, biomes, and continents, and ranged widely from 1.4 to 9,630.0 (median 430.0 and mean 570.0) mg kg−1 across the globe. About two-thirds (65 %) of the global variation was accounted for by the 13 variables that we selected, among which soil organic carbon concentration, parent material, mean annual temperature, and soil sand content were the most important. While global predictions of soil total P concentration increased significantly with latitude, they varied largely among regions with similar latitudes due to regional differences in parent material, topography, and/or climate conditions. Global soil P stocks (excluding Antarctica) were estimated to be 26.8 ± 3.1 (mean ± standard deviation) Pg and 62.2 ± 8.9 Pg (1 Pg = 1 × 1015 g) in the topsoil (0–30 cm) and subsoil (30–100 cm), respectively. Our global map of soil total P concentration as well as the underlying drivers of soil total P concentration can be used to constraint Earth system models that represent the P cycle and to inform quantification of global soil P availability. Raw datasets and global maps generated in this study are available at https://doi.org/10.6084/m9.figshare.14583375 (He et al., 2021).
Document type :
Preprints, Working Papers, ...
Complete list of metadata

https://hal.inrae.fr/hal-03335526
Contributor : Bruno Ringeval <>
Submitted on : Monday, September 6, 2021 - 12:00:26 PM
Last modification on : Wednesday, September 22, 2021 - 10:17:50 AM

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Links full text

Identifiers

Citation

Xianjin He, Laurent Augusto, Daniel Goll, Bruno Ringeval, Yingping Wang, et al.. Global patterns and drivers of soil total phosphorus concentration. 2021. ⟨hal-03335526⟩

Share

Metrics

Record views

35