dad: an R Package for Visualisation, Classification and Discrimination of Multivariate Groups Modelled by their Densities - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Article Dans Une Revue The R Journal Année : 2021

dad: an R Package for Visualisation, Classification and Discrimination of Multivariate Groups Modelled by their Densities

Résumé

Multidimensional scaling (MDS), hierarchical cluster analysis (HCA) and discriminant analysis (DA) are classical techniques which deal with data made of n individuals and p variables. When the individuals are divided into T groups, the R package dad associates with each group a multivariate probability density function and then carries out these techniques on the densities which are estimated by the data under consideration. These techniques are based on distance measures between densities: chi-square, Hellinger, Jeffreys, Jensen-Shannon and L p for discrete densities, Hellinger , Jeffreys, L 2 and 2-Wasserstein for Gaussian densities, and L 2 for numeric non Gaussian densities estimated by the Gaussian kernel method. Practical methods help the user to give meaning to the outputs in the context of MDS and HCA, and to look for an optimal prediction in the context of DA based on the one-leave-out misclassification ratio. Some functions for data management or basic statistics calculations on groups are annexed.
Fichier principal
Vignette du fichier
2021 Boumaza et al_R Journal_Accepted.pdf (940.51 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03344822 , version 1 (15-09-2021)

Identifiants

Citer

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard. dad: an R Package for Visualisation, Classification and Discrimination of Multivariate Groups Modelled by their Densities. The R Journal, 2021, 13 (2), pp.179-207. ⟨10.32614/RJ-2021-071⟩. ⟨hal-03344822⟩
98 Consultations
99 Téléchargements

Altmetric

Partager

More