Tradeoffs and Synergies in Tropical Forest Root Traits and Dynamics for Nutrient and Water Acquisition: Field and Modeling Advances - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue (Article De Synthèse) Frontiers in Forests and Global Change Année : 2021

Tradeoffs and Synergies in Tropical Forest Root Traits and Dynamics for Nutrient and Water Acquisition: Field and Modeling Advances

Elizabeth A. Agee
  • Fonction : Auteur
Milton H Diaz-Toribio
  • Fonction : Auteur
Dan Metcalfe
  • Fonction : Auteur
Richard J Norby
  • Fonction : Auteur
Rafael S Oliveira
  • Fonction : Auteur
Jennifer S Powers
  • Fonction : Auteur
Tatiana Reichert
  • Fonction : Auteur
Stuart W Smith
  • Fonction : Auteur
Chris M Smith-Martin
  • Fonction : Auteur
Fiona M Soper
  • Fonction : Auteur
Laura Toro
  • Fonction : Auteur
Maria N Umaña
  • Fonction : Auteur
Oscar Valverde-Barrantes
  • Fonction : Auteur
Monique Weemstra
  • Fonction : Auteur
Leland K Werden
  • Fonction : Auteur
Cynthia L Wright
  • Fonction : Auteur
Daniela Yaffar
  • Fonction : Auteur

Résumé

Vegetation processes are fundamentally limited by nutrient and water availability, the uptake of which is mediated by plant roots in terrestrial ecosystems. While tropical forests play a central role in global water, carbon, and nutrient cycling, we know very little about tradeoffs and synergies in root traits that respond to resource scarcity. Tropical trees face a unique set of resource limitations, with rock-derived nutrients and moisture seasonality governing many ecosystem functions, and nutrient versus water availability often separated spatially and temporally. Root traits that characterize biomass, depth distributions, production and phenology, morphology, physiology, chemistry, and symbiotic relationships can be predictive of plants’ capacities to access and acquire nutrients and water, with links to aboveground processes like transpiration, wood productivity, and leaf phenology. In this review, we identify an emerging trend in the literature that tropical fine root biomass and production in surface soils are greatest in infertile or sufficiently moist soils. We also identify interesting paradoxes in tropical forest root responses to changing resources that merit further exploration. For example, specific root length, which typically increases under resource scarcity to expand the volume of soil explored, instead can increase with greater base cation availability, both across natural tropical forest gradients and in fertilization experiments. Also, nutrient additions, rather than reducing mycorrhizal colonization of fine roots as might be expected, increased colonization rates under scenarios of water scarcity in some forests. Efforts to include fine root traits and functions in vegetation models have grown more sophisticated over time, yet there is a disconnect between the emphasis in models characterizing nutrient and water uptake rates and carbon costs versus the emphasis in field experiments on measuring root biomass, production, and morphology in response to changes in resource availability. Closer integration of field and modeling efforts could connect mechanistic investigation of fine-root dynamics to ecosystem-scale understanding of nutrient and water cycling, allowing us to better predict tropical forest-climate feedbacks.
Fichier principal
Vignette du fichier
Cusack_etal_Frontiers_Forests_Global_Change_2021_.pdf (3.15 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03463424 , version 1 (02-12-2021)

Identifiants

Citer

Daniela Francis Cusack, Shalom D Addo-Danso, Elizabeth A. Agee, Kelly M Andersen, Marie Arnaud, et al.. Tradeoffs and Synergies in Tropical Forest Root Traits and Dynamics for Nutrient and Water Acquisition: Field and Modeling Advances. Frontiers in Forests and Global Change, 2021, 4, ⟨10.3389/ffgc.2021.704469⟩. ⟨hal-03463424⟩
71 Consultations
40 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More