Evaluation of a robust regression method (RoBoost-PLSR) to predict biochemical variables for agronomic applications: Case study of grape berry maturity monitoring - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Article Dans Une Revue Chemometrics and Intelligent Laboratory Systems Année : 2022

Evaluation of a robust regression method (RoBoost-PLSR) to predict biochemical variables for agronomic applications: Case study of grape berry maturity monitoring

Résumé

Visible and near infrared spectroscopy (VIS-NIR) is increasingly being transferred from laboratory to industry for in-line and portable applications in various domains. By intensively using VIS-NIR spectroscopy, some abnormal observations may certainly arise. It is then important to properly handle outliers to elaborate effective prediction models. The objective of this study is to investigate the potential of using a robust method called Roboost-PLSR to improve prediction model performances for a viticulture application. This work focuses on a case study to predict sugar content in grape berries of three different grape varieties of Vitis Vinifera in a maturity monitoring context. Hyperspectral images were acquired of grape berries of Syrah, Fer-Servadou and Mauzac varieties. Reference measurements of sugar levels were made in the laboratory by densimetric baths.
Fichier principal
Vignette du fichier
Courand et al.pdf (1.21 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03538442 , version 1 (21-01-2022)

Identifiants

Citer

Aldrig Courand, Maxime Metz, Daphné Héran, Carole Feilhes, Fanny Prezman, et al.. Evaluation of a robust regression method (RoBoost-PLSR) to predict biochemical variables for agronomic applications: Case study of grape berry maturity monitoring. Chemometrics and Intelligent Laboratory Systems, 2022, 221, ⟨10.1016/j.chemolab.2021.104485⟩. ⟨hal-03538442⟩
63 Consultations
218 Téléchargements

Altmetric

Partager

More