Chromatin Immunoprecipitation dataset of H3ac and H3K27me3 histone marks followed by DNA sequencing of Medicago truncatula embryos during control and heat stress conditions to decipher epigenetic regulation of desiccation tolerance acquisition
Résumé
Desiccation tolerance (DT) is one of the most important processes that seeds need to acquire during seed maturation because it will ensure survival until seeds have favourable conditions for germinating. Moreover, in the current climate warming context, heat stress and its impact on seed maturation and quality has been increasingly studied by the scientific community. Even if the transcriptomic changes enrolled in DT acquisition and seed heat stress response are fairly known, its epigenetic control has not yet been investigated. Medicago truncatula is a model legume for studying seed molecular mechanisms, which is known to display a delay in the acquisition of seed maturation mechanisms under heat conditions, except for desiccation acquisition. Our aim was to evaluate the role of two histone marks during embryo development under control and heat stress conditions on seed maturation processes, including the DT acquisition. These histone marks have either repressive (H3K27me3) or inducible (H3ac) effects on gene transcription, respectively corresponding to markers of packed and accessible chromatins. We identified all genomic regions bound to the H3K27me3 histones at four developmental stages and to the H3ac histones at the two earlier developmental stages during seed maturation, from seed filling to mature dry seeds, collected under optimal and heat stress conditions in the model legume, Medicago truncatula (reference genotype A17). A list of genes and promoters potentially linked to these two histone marks is reported and could provide clues about the epigenetic regulation of seed maturation between control and heat stress conditions, including the desiccation tolerance acquisition.
Origine | Fichiers produits par l'(les) auteur(s) |
---|