Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Access content directly
Journal Articles Cell Year : 2021

Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector

Abstract

Plant immunity is activated upon pathogen perception and often affects growth and yield when it is constitutively active. How plants fine-tune immune homeostasis in their natural habitats remains elusive. Here, we discover a conserved immune suppression network in cereals that orchestrates immune homeostasis, centering on a Ca2+-sensor, RESISTANCE OF RICE TO DISEASES1 (ROD1). ROD1 promotes reactive oxygen species (ROS) scavenging by stimulating catalase activity, and its protein stability is regulated by ubiquitination. ROD1 disruption confers resistance to multiple pathogens, whereas a natural ROD1 allele prevalent in indica rice with agroecology-specific distribution enhances resistance without yield penalty. The fungal effector AvrPiz-t structurally mimics ROD1 and activates the same ROS-scavenging cascade to suppress host immunity and promote virulence. We thus reveal a molecular framework adopted by both host and pathogen that integrates Ca2+ sensing and ROS homeostasis to suppress plant immunity, suggesting a principle for breeding disease-resistant, high-yield crops.
Fichier principal
Vignette du fichier
Gao-Cell-2021-CC-BY.pdf (10.17 Mo) Télécharger le fichier
Origin : Publication funded by an institution

Dates and versions

hal-03594618 , version 1 (02-03-2022)

Licence

Attribution

Identifiers

Cite

Mingjun Gao, Yang He, Xin Yin, Xiangbin Zhong, Bingxiao Yan, et al.. Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector. Cell, 2021, 184 (21), pp.5391-5404.e17. ⟨10.1016/j.cell.2021.09.009⟩. ⟨hal-03594618⟩
65 View
50 Download

Altmetric

Share

Gmail Facebook X LinkedIn More