Stability analysis of functionals in variational data assimilation with respect to uncertainties of input data for a sea thermodynamics model
Résumé
The problem of stability and sensitivity of functionals of the optimal solution of the variational data assimilation of sea surface temperature for the model of sea thermodynamics is considered. The variational data assimilation problem is formulated as an optimal control problem to find the initial state and the boundary heat flux. The sensitivity of the response functions as functionals of the optimal solution with respect to the observation data is studied. Computing the gradient of the response function reduces to the solution of a non-standard problem being a coupled system of direct and adjoint equations with mutually dependent initial and boundary values. The algorithm to compute the gradient of the response function is presented, based on the Hessian of the original cost functional. Stability analysis of the response function with respect to uncertainties of input data is given. Numerical examples are presented for the Black and Azov seas thermodynamics model.