Identifying the impact of toxicity on stream macroinvertebrate communities in a multi-stressor context based on national ecological and ecotoxicological monitoring databases
Résumé
In situ bioassays are used to measure the harmful effects induced by mixtures of toxic chemicals in watercourses. In
France, national-scale biomonitoring data are available including invertebrate surveys and in-field chemical toxicity
measures with caged gammarids to assess environmental toxicity of mixtures of chemicals. The main objective of
our study is to present a proof-of-concept approach identifying possible links between in-field chemical toxicity,
stressors and the ecological status. We used two active biomonitoring databases comprising lethal toxicity (222 in
situ measures of gammarid mortality) and sublethal toxicity (101 in situ measures of feeding inhibition). We measured the ecological status of each active biomonitoring site using the I2M2 metric (macroinvertebrate-based multimetric index), accounted for known stressors of nutrients and organic matter, hydromorphology and chemical toxicity. We observed a negative relationship between stressors (hydromorphology, nutrients and organic matter, and chemical toxicity) and the good ecological status. This relationship was aggravated in watercourses where toxicity indicators were degraded. We validated this hypothesis for instance with nutrients and organic matter like nitrates or hydromorphological conditions like percentage of vegetation on banks. Future international assesments concerning the role of in-field toxic pollution on the ecological status in a multi-stressor context are now possible via the current methodology.