Above‐ and belowground drivers of intraspecific trait variability across subcontinental gradients for five ubiquitous forest plants in North America - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue Journal of Ecology Année : 2022

Above‐ and belowground drivers of intraspecific trait variability across subcontinental gradients for five ubiquitous forest plants in North America

Françoise Cardou
Alison Munson
Laura Boisvert-Marsh
Madhur Anand
André Arsenault
F. Wayne Bell
  • Fonction : Auteur
Yves Bergeron
Sylvain Delagrange
Nicole Fenton
Dominique Gravel
  • Fonction : Auteur
Benoît Hamel
  • Fonction : Auteur
François Hébert
  • Fonction : Auteur
Jill Johnstone
Bright Kumordzi
S. Ellen Macdonald
Azim Mallik
Anne Mcintosh
Jennie Mclaren
Christian Messier
  • Fonction : Auteur
Dave Morris
Bill Shipley
Luc Sirois
  • Fonction : Auteur
Nelson Thiffault
Isabelle Aubin

Résumé

1. Intraspecific trait variability (ITV) provides the material for species' adaptation to environmental changes. To advance our understanding of how ITV can contribute to species' adaptation to a wide range of environmental conditions, we studied five widespread understorey forest species exposed to both continental-scale climate gradients, and local soil and disturbance gradients. We investigated the environmental drivers of between-site leaf and root trait variation, and tested whether higher between-site ITV was associated with increased trait sensitivity to environmental variation (i.e. environmental fit). 2. We measured morphological (specific leaf area: SLA, specific root length: SRL) and chemical traits (Leaf and Root N, P, K, Mg, Ca) of five forest understorey vascular plant species at 78 sites across Canada. A total of 261 species-by-site combinations spanning similar to 4300km were sampled, capturing important abiotic and biotic environmental gradients (neighbourhood composition, canopy structure, soil conditions, climate). We used multivariate and univariate linear mixed models to identify drivers of ITV and test the association of between-site ITV with environmental fit. 3. Between-site ITV of leaf traits was primarily driven by canopy structure and climate. Comparatively, environmental drivers explained only a small proportion of variability in root traits: these relationships were trait specific and included soil conditions (Root P), canopy structure (Root N) and neighbourhood composition (SRL, Root K). Between-site ITV was associated with increased environmental fit only for a minority of traits, primarily in response to climate (SLA, Leaf N, SRL). 4. Synthesis. By studying how ITV is structured along environmental gradients among species adapted to a wide range of conditions, we can begin to understand how individual species might respond to environmental change. Our results show that generalisable trait-environment relationships occur primarily aboveground, and only accounted for a small proportion of variability. For our group of species with broad ecological niches, variability in traits was only rarely associated with higher environmental fit, and primarily along climatic gradients. These results point to promising research avenues on the various ways in which trait variation can affect species performance along different environmental gradients.
Fichier principal
Vignette du fichier
2022_Cardou_J_Ecology.pdf (2.54 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Licence : CC BY - Paternité

Dates et versions

hal-04066693 , version 1 (12-04-2023)

Licence

Paternité

Identifiants

Citer

Françoise Cardou, Alison Munson, Laura Boisvert-Marsh, Madhur Anand, André Arsenault, et al.. Above‐ and belowground drivers of intraspecific trait variability across subcontinental gradients for five ubiquitous forest plants in North America. Journal of Ecology, 2022, 110 (7), pp.1590-1605. ⟨10.1111/1365-2745.13894⟩. ⟨hal-04066693⟩
18 Consultations
3 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More