Stochastic individual-based models with power law mutation rate on a general finite trait space - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
Journal Articles Electronic Journal of Probability Year : 2021

Stochastic individual-based models with power law mutation rate on a general finite trait space

Abstract

We consider a stochastic individual-based model for the evolution of a haploid, asex- ually reproducing population. The space of possible traits is given by the vertices of a (possibly directed) finite graph G = (V, E). The evolution of the population is driven by births, deaths, competition, and mutations along the edges of G. We are interested in the large population limit under a mutation rate μK given by a negative power of the carrying capacity K of the system: μK = K−1/α, α > 0. This results in several mutant traits being present at the same time and competing for invading the resident population. We describe the time evolution of the orders of magnitude of each sub-population on the log K time scale, as K tends to infinity. Using techniques developed in [ 8], we show that these are piecewise affine continuous functions, whose slopes are given by an algorithm describing the changes in the fitness landscape due to the succession of new resident or emergent types. This work generalises [ 25 ] to the stochastic setting, and Theorem 3.2 of [6 ] to any finite mutation graph. We illustrate our theorem by a series of examples describing surprising phenomena arising from the geometry of the graph and/or the rate of mutations.
Fichier principal
Vignette du fichier
2021_Coquille_EJP.pdf (830.66 Ko) Télécharger le fichier
Origin Publisher files allowed on an open archive
Licence

Dates and versions

hal-04073922 , version 1 (09-08-2023)

Licence

Identifiers

Cite

Loren Coquille, Anna Kraut, Charline Smadi. Stochastic individual-based models with power law mutation rate on a general finite trait space. Electronic Journal of Probability, 2021, 26 (none), pp.1-38. ⟨10.1214/21-EJP693⟩. ⟨hal-04073922⟩
32 View
8 Download

Altmetric

Share

More